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HYPERSURFACESV OF ODD-DIMENSIONAL SPHERES

DAVID E. BLAIR, GERALD D. LUDDEN & KENTARO YANO

A structure similar to an almost complex structure was shown in [2] to exist
on a hypersurface of an almost contact manifold or a submanifold of codimen-
sion 2 of an almost complex space. This structure on a manifold M has been
studied in {1}, [5], [6] from two points of view, namely, that the structure ex-
ists on M because M is a submanifold of some ambient space, and also that
the structure exists intrinsically on M.

The odd-dimensional sphere S$***! has an almost contact structure which is
naturally induced from the Kaehler structure of Euclidean space E***?, The
purpose of this paper is to study complete hypersurfaces immersed in $?2*!. In
§ 3 it is shown that if the Weingarten map of the immersion and f commute then
the hypersurface is a sphere whose radius is determined. Here, f is a tensor field
of type (1,1) on the hypersurface, which is part of the induced structure. That
the hypersurface satisfying this condition is a sphere follows from the results in
[6], however a new proof is given here for completeness. In § 4 it is shown that
if the Weingarten map K of the immersion and f satisfy fK 4+ Kf = 0, and the
hypersurface is of constant scalar curvature, then it is a great sphere or $* x S$*.

1. Hypersurfaces of a sphere

Let $***! be the natural sphere of dimension 2n + 1 in Euclidean (2n + 2)-
space E***%, Let (g, &, 7, g) be the normal, almost contact metric structure (see
[4]) induced on S$***! by the Kaehler structure on E***2. That is to say, ¢ is a
tensor field of type (1,1), & is a vector field, 5 is a 1-form and g is a Riemannian
metric on S$**! satisfying

$=-T+7Q¢,
¢E=0, 770¢=0,
(1) " =1,

89X, 7)) + yX ) = g(X, ),
(6,8l + dp®E=0,

where [¢, 4] is the Nijenhuis torsion tensor of ¢, and X and Y are arbitrary
vector fields on $#7+1,
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Suppose x: M** — §**! js an embedding of the orientable manifold M*® in
§#+*1, The tensor G defined on M** by

(2) G(X, Y) = g(ﬂ'*X’ ﬂ*Y)

is a Riemannian metric on M*®, where =, denotes the differential of the
embedding z. If C is a field of unit normals defined on M*, and F is the
Riemannian connection of g, then the Gauss and Weingarten equations can be
written as

(3 V. xmY = 2, (FxY) + kX, V)C,
V.2C = 7, (KX) .

Then F is the Riemannian connection of G, k is a symmetric tensor of type
(0,2) on M**, and G(KX, Y) = k(X, Y). Furthermore, if we set

o X = nfX + v(X)C, &==xU+IC,

(4)
¢C = —BV ,  uX) = px,X),

then f is a tensor field of type (1,1), U and V are vector fields, ¥ and v are
1-forms, and 2 is a function satisfying

fif=—-14+u®U+vQV,
Uof=Av, Vof = —Au,
(5) fU=—v, V¥ =2aUu,
ul)=v(V)=1-— 2, uV)y=vU) =0,
GUX,fY) = GX,Y) — u(X)u(Y) — v(X)v(Y) .

It was shown in [2] that the following relations hold
FHY = GX, YU — w(Y)X — KX, V)V + v»(Y)KX ,
VU= —fX — KX ,

VsV = —2X + KX,
V2= vX) + KU, X) .

(6)

2. Casel: Kf —fK=0

We will prove the following theorem.

Theorem 1. If M is an orientable submanifold of $***! satisfying Kf={K,
and A+ constant, K being the Weingarten map of the embedding, and f and
1 being defined in (4), then M is a sphere of radius 1/+/'1 + of, where « is
some constant determined by the embedding.
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Proof. We have that 0 = G((Kf — fK)U, U), so that

0 = G(XfU,U) — GGUKU, U)
= —2G(V,KU) + G(KU, fU)
= —IG(V,KU) — 2.GKKU, V) .

Therefore we see 2 = 0 or k(U, V) = 0. By continuity, since 2 is non-constant,
(7) KU, V)=0.

In a similar fashion we obtain

(8) ' KU, U=k, V).

Now fKU 4 2KV = 0, so that

0= —KU + w(KUU + vKU)V + iKfV
— KU + w(KU)U + 2KU ,

and hence

(1 — KU = kU, 0)U .
Similarly, we obtain

(1 — DKV = kU, U)V .

At points where 2 # + 1, we have KU = U for « = &k(U, U)/(1 — 2%, which
implies

VKU + K(—fX — 2KX) =V ya-U + a(—fX — AKX) .

The Codazzi equation for an embedding gives that (F K} Y) = (F YK)(X)F SO
that we have

2GKfZ,X) = W xoduw(Z) — V zedu(X) + 2aG(fZ, X) .
If we set Z equal to U, then |
—20u(X) = Fza)(1 — ) — Tyou(X) — 22u(X) ,
so that V ya and u(X) are proportional. Therefore Kf=af, and hence
—KX + w(X)KU + v(X)KV = a(—X + u(X)U + v(X)V) .

Thus KX = X for all X, and by the Codazzi equation « is constant. From
(6) we have that F 32 = v(X) + au(X), and therefore that
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ViV xd — A2y X) = Vy(0(X) + au(X)) — @y X) + aulV’yX))
= —~1G(X,Y) 4+ aG(X,fY) — aG(X,{Y) — ciG(KY, X)
= —1 + AGIX,Y) .

By the following lemma of Obata [3], M*"® is sphere of radius (1 4 &%)~

Lemma. A complete connected Riemannian manifold M admits a non-
trivial solution 2 of ViV 32 — dA(VyX) = —kAG(X, Y) for some real number
k > 0 if and only if M is globally isometric to a Euclidean sphere of radius
ke,

Corollary. Let M** be an orientable submanifold of S*™*! with 1 + constant.
Then Kf — fK = 0 if and only if M*™ is a totally umbillical submanifold of §*%+.

Remark. In [5], there was introduced the idea of normality of an (f, G, u,
v, A-structure, which is of a manifold M** with tensors satisfying (5). This
condition is ‘

FA4+du®@U +dv®V =0.

We have the following proposition.

Proposition. Let M*™ be a hypersurface of S$*™*' with A #+ constant. The
{, G, u, v, )-structure on M*" is normal if and only if fK — Kf = 0.

Proof. Let

SX,Y) = L I(X,Y) + du(X, V)U + do(X, )V .
Using (5) it can be shown that
SX,Y) = v(¥Y)Kf — K)X — v(X)Kf ~ fK)Y ,

and hence the ¢if’’ part of the proposition is proved. On the other hand, as-
sume S(X, Y)=0 for all X and Y and let PX = (Kf — fK)X. Then

v(V)PX = v(X)PV .
Also, it can be shown that_
G(PX,Y) = GX, PY)
so that
v X)GPV,Y) = v(Y)G(PV,X) ,
that is to say,
G®V,Y) = au(Y)

for some «. Thus we have that



HYPERSURFACES OF ODD-DIMENSIONAL SPHERES 483

v(V)GPPX,Y) = v(X)G(PV,Y) = av(XD)v(Y) ,

but since the trace of P is 0, we have @« = 0 and thus P = 0.

3. Casell: Kf+fK=0

In this section we prove the following theorem.

Theorem 2. If M?*" is a complete orientable submanifold of §**** with con-
stant scalar curvature satisfying Kf 4+ fK = 0 and A + constant, where K is
the Weingarten map of the embedding, and f and A are defined in (4), then M™
is a natural sphere §" or M** = S x S".

Proof. We have that

0= (f+ KU = —iKV + KU ,
0 = (Kf + fK)V = AKU + KV,

so that _
0= —kV,V) 4+ GUKU, V)
= 2k(V,V) — GKU,fV)
and hence
(9) KU, U) + k(V,V)=0

by continuity. Also

0= — KV + FKU
= KU 4 (—KU 4+ w(KO)U + v(KU)V) ,

that is,

10) (1 — KU = kU, OHU + kU, V)V,
and similarly

an (A — KV = kU, VU + k(V, NV .
At points where 2 #= =+ 1, write equations (10) and (11) as

10) KU = aU + gV,
1) KV = g8U — aV .

If we apply Iy to equation (10’), use equation (6) for U and ¥V, and use
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the fact that (F;K)Y = (F,K)X because of the Codazzi equation, then we find
that

7 u(¥) — Fyadu(X) + (7 xHo(¥)
— (Pxp(X) — 20F(X,Y) =0,

where F(X,Y) = G(fX, Y). Setting X = U and Y =V and using the fact that
A 5= constant we see that

(12)

(13) —FVya+VyB+202=0.
From equations (12) and (13) we obtain

(14) (1 — Wy = Fya)u(Y) + Fya)v(Y) ,
(15) (1 — 2WyB = Fypu(¥) + Frpo(Y),
(16)  2a(1 — A)FX, Y) = @w(X)vX) — v(NuX))Vva — Vyp) .

However, since the rank of f is >2n — 2, equation (16) implies that & = 0 and
VyB = 0if n % 1. Thus equation (12) becomes

(12) F (X)) = FyPvX) ,
or
(127 (A — BWxp = FpHvX) .

Applying V ; to equation (11’), and using the fact that & = 0 and the Codazzi
equation, we find that

A7 TPuX) — TxHuX) — 26F(X,Y) — 2F(KX,KY) =0 .

Setting ¥ = U and using (12”) we have that 282 = 282 — V.8 so that 8 =
constant implies that 3 = Oor 8 = 1.
Replace Y by fY in equation (17) and use equation (12”) to obtain

2(1 — ®AF(KX,KfY)
= (VyPX)u(fY) —v(f)u(X)) — 28(1 — DIFX,fY) ,
that is,

—2(1 — DOIGKX,KY) — u(KX)u(KY) — v(KX)v(KY)]
= Vyfl2vX)v(Y) + auX)u(Y)]
— 281 — DIGX,Y) — uX)u(Y) — v(X)(Y)] ,

from which follows
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(18 Q-DK=F-pPpuU+v®V) + sl — I .

From (18) and a previous remark we see that if 8 = constant then Kz = 0
or K* = 1. If K* = 0, then K = 0 since K is symmetric. In this case, M?" is a
totally geodisic submanifold of $***! and hence M?** = $?, In the case where
K* = I, K gives an almost product structure on M?»,

We have

k(fX, 1Y) = G(KfX, fY) = G(Kf'X,Y)
= —G(KX,Y) + uX)GKU,Y) + v(X)GKV,Y)
= —kX,Y) + puX)v(Y) + v(X)u(Y)) .

Now since (U, U) + k(V, V) = 0 and G(U, V) = 0, the last equation can be
used to show that the trace of K is O, that is, M*” is a minimal hypersurface
(note that this last conclusion holds whether or not 8 = constant). In the case
where K? = [, tr K = 0 implies that the global distributions on M** gjven by
3K + D and $(I — K) are both of dimension .

Now to find the scalar curvature of M*" by the Gauss equation, let R and
R denote the curvature tensors of g and G respectively. Then the Gauss equa-
tion is

R(W*X, 7. Y, n.Z, n W)

19

Using (18) and the fact that $***' is of constant curvature equal to 1, for
1 — 2 # 0 we have

RX,Y) = (2n — Dg(X,Y)

— e, 1) + E=Laoum + vaow)]

where R is the Ricci tensor of G. From this it follows that the scalar curvature
of M** is equal to 2n(2n — 1) — p(2n — 2) — 2/, and therefore that g =
constant.

If we apply F; to equation (19) and use the second Bianchi identity and
tr K = 0, then we obtain that

FKY + FyK)X =0,

and thus F xK = 0 by the Codazzi equation.
Therefore, if 8 = 1, the almost product structure K is decomposable. Hence
by completeness, M** is a product M"” X M". Now we have, by equation

an,
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GUfK = DX, (K = DY)

(20) — F(KX,KY) + F(X,Y) = (FKX,Y) + F(X,KY)) = 0,

and, by equation (6),

Vil xA — dAVy(X)) = Vy(v(X) + k(U, X)) — (v X) + k(U, Vv X))
= Fy)X + k(,U, X) = —22G(X,Y) — 2G(fY,KX) .

From equation (20) we see that if X and Y are both in the distribution I 4 K
or ] — K, then g(fY, KX) = 0 so that

VyVXz - dz(VyX) = -—-22G(X, Y) .
Thus, M” and M" are both spheres of radius 1/4/ 2 by the lemma of Obata.

References

[1]1 D. E. Blair & G. D. Ludden, On Intrinsic structures similar to those on S,
Kodai Math. Sem. Rep.

[2] D.E. Blair, G. D. Ludden & X. Yano, Induced structures on submanifolds, Kodai
Math. Sem. Rep. 22 (1970) 188-198.

[31 M. Obata, Certain conditions for a Riemannian manifold to be isometric with
a sphere, J. Math. Soc. Japan 14 (1962) 333-340.

[41 Y. Tashiro, On conract structure of hypersurfaces in complex manifolds. 1, Téhoku
Math. J. 2 (1963) 62-78.

[5] K. Yano & M. Okumura, On (f, g, u, v, A)-structures, Kodai Math. Sem. Rep.
22 (1970) 401-423.

(6] ——, On normal (f, g, u, v, 2)-structures on submanifolds of codimension 2 in
a Euclidean space, to appear.

MICHIGAN STATE UNIVERSITY





